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Abstract: We quantified the spatial and temporal entropy related to football teams and their players
by means of a pass-based interaction. First, we calculated the spatial entropy associated to the
positions of all passes made by a football team during a match, obtaining a spatial entropy ranking
of Spanish teams during the 2017/2018 season. Second, we investigated how the player’s average
location in the field is related to the amount of entropy of his passes. Next, we constructed the
temporal passing networks of each team and computed the deviation of their network parameters
along the match. For each network parameter, we obtained the permutation entropy and the statistical
complexity of its temporal fluctuations. Finally, we investigated how the permutation entropy
(and statistical complexity) of the network parameters was related to the total number of passes
made by a football team. Our results show that (i) spatial entropy changes according to the position
of players in the field, and (ii) the organization of passing networks change during a match and
its evolution can be captured measuring the permutation entropy and statistical complexity of the
network parameters, allowing to identify what parameters evolve more randomly.

Keywords: football; spatial entropy; network science; permutation entropy; statistical complexity;
team performance

1. Introduction

In the recent years, the analysis of organization and performance of both football teams and their
players underwent a revolution [1–5]. The main reason is the access to new sets of data thanks to the
application of emergent technologies to the recording of players’ activity during a match [6]. In this
way, it is possible to have access to all events occurring on the pitch (passes, interceptions, shots, goals,
fouls, etc.), all of them with precise temporal and spatial coordinates, and the players responsible for
each event. On the other hand, it is also possible to track the positions of all (twenty-two) players on
the field, together with the ball, at rates approaching 25–30 frames per second [7,8], which allows one
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to determine the position, speed and acceleration of each player, giving very useful information about
their physical and tactical performances [9–11].

However, the key advances have not been the amount and quality of the datasets themselves,
but the possibility of applying (or defining) new methodological tools. On that sense, the application
of network science [12] to football datasets is giving a completely new perspective about football
analysis, since it allows one to understand the roles of players as a whole, not as isolated components
without interactions between them. In this way, it is possible to construct football passing networks,
composed of nodes (players) and links (passes between players), whose organization is far from being
random. The analysis of football passing networks has shown that their properties continuously
evolve during a match and that key events, such as goals, may affect the network organization [13].
Classical network properties, such as the clustering coefficient [14], the shortest path length [15] and
the existence of motifs [16] or communities of players with strong interactions between them, have
been investigated [17], allowing not only the characterization of the organization of a team but also
quantification of the roles of players in the network [18,19].

In this paper, we are concerned with one particular feature of football passing networks: Entropy.
Specifically, we are interested in understanding how the network organization fluctuates along a
match, and identifying those network parameters that evolve in a more (or less) random or complex
manner. The reasons are twofold. One the one hand, detecting those parameters that behave more
randomly should give us useful information about their (low) predictability, and, at the same time,
should show us which parameters behave less randomly, suggesting that certain guiding rules could
be behind their evolution. On the other hand, we determine to what extent the features of football
teams (in this case, the entropy of the network parameters) are general, whether they change from
team to team and what their relations to team performance are.

Importantly, previous studies about the entropy existing in football have left the existence of an
underlying network of connections aside. For example, the use of Generalized Entropy (GE) [20] to
analyze the distribution of the number of points obtained by football teams at the end of a season
allows quantifying the competitive balance of a given league [21]. As a result, it was shown that the
competitiveness of English Premier League (EPL) is highly imbalanced, and different noncompeting
groups were identified: (i) the top five teams aspiring to win the league or to reach the European
Championship, (ii) a group of teams competing for positions in lesser European competitions and
(iii) a set of teams just aspiring to maintain a position in the EPL. A completely different approach was
made by Sampaio and Maçãs, who used the Approximate Entropy (AE) [22] to quantify the regularity
levels of the movements (measured with GPS devices) of players with different levels of expertise [10].
The approximate entropy allowed them to evaluate the in-phase and anti-phase coordination of players,
showing more regular patterns after a 13-week football program. A posterior study computing the AE
during the development of a match showed that AE decreases as time goes by, indicating a tendency
toward more regular patterns that may be attributed to players’ fatigue [23]. It is also possible to relate
the level of entropy of players’ movements to their position in the field. In [8], the Shannon Entropy
(SE) and the AE computed over the heat maps of players during a match showed that goalkeepers are
the players with the lowest entropy, while midfielders are those with the highest.

Interestingly, entropy is also dependent on the number of interacting players, as shown by [11]
in the context of small-sided games. These kinds of exercises involve a reduction of the pitch
dimensions together with a low number of players, which can change depending on the kind of
game. The computation of the Boltzman-Gibbs-Shannon entropy [24] to the position of players showed
that the larger the number of opponents, the higher the regularity of the movements of a team (as
shown by a reduction of their entropy) [11].

In view of all, entropy in football has been mainly associated to the position of players [25];
however, the recent advances made by the application of network science to football datasets open
the door to an alternative perspective: The evaluation of the entropy related to passing networks,
and more specifically, the understanding of the fluctuations of their structure along time. With this aim,
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we constructed the temporal passing networks obtained from the football matches of Spanish national
league (“La Liga”) during the season 2017/2018. We observed how the structure and parameters of
time-evolving passing networks, which were constructed using the last 50 passes made by a team at every
moment of the match, have continuous fluctuations, and we analyzed both the entropy and complexity
levels of these fluctuations using ordinal patterns, a technique that has been demonstrated to extract
hidden patterns from real time series [26]. Our results allowed us to determine which network
parameters have higher/lower entropy; which teams behave more randomly; and finally, what the
interplay is between the average number of passes made by a team and the entropy/complexity of the
resulting passing networks.

2. Results

2.1. Datasets

Datasets were provided by Opta [27] and consist of all passes completed in a football match by
each team of the first division of the Spanish national league (“La Liga”) during the season 2017/2018.
Specifically, consists of a set of 380 matches, 38 per team. For all completed passes, we have the
information about: (i) the player who passed the ball, (ii) the player who received the ball, (iii) the
positions (x and y coordinates) of the sender and the receiver and (iv) the time at which the pass was
made (see Table 1 for details).

Table 1. Structure of the datasets. Time, in seconds, corresponds to the moment when a pass was made.
Player 1 and Player 2 are, respectively, the sender and receiver of the pass, while x1,2 and y1,2 are the
coordinates of both players, in field units (bounded, at both axis, between 0 and 100).

Time (Seconds) Team Player 1 x1 y1 Player 2 x2 y2

. . . . . . . . . . . . . . . . . . . . . . . .

128 Real Madrid Ramos 33.47 58.35 Modrić 42.30 58.75

130 Real Madrid Modrić 59.36 70.00 Benzema 60.10 74.90

136 Real Madrid Benzema 60.15 80.15 Vinícius 65.40 86.50

. . . . . . . . . . . . . . . . . . . . . . . .

We obtained a total of 284,813 completed passes from the 380 matches, with a total number of
passes per match ranging from 442 (Eibar vs. Leganés) to 1082 (Real Madrid vs. Real Sociedad).
Concerning the differences of length and width existing between all pitches of the league, the x and
y coordinates are given in “field units,” bounded at both axis between 0 and 100. The x coordinate
increases as we are approaching the opponent’s goal, while the coordinate y = 0.0 corresponds to the
left limit of the pitch and y = 100.0 to the right one. In this way, the coordinate (50.0, 50.0) locates the
center of the pitch, the opponent’s goal is centered at (100.0, 50.0) and a team’s own goal is centered
at (0.0, 50.0) Finally, when a substitution occurs, the incoming player takes the place (as a node of
the network) of the replaced player. That way, we place the focus on what a team is doing instead of
looking at the roles of the players.

2.2. Spatial Analysis: Quantifying Spatial Entropy

First, we quantified the heterogeneity of the positions of all passes completed during the match,
with the aim of determining whether the passing positions are randomly distributed, or on the contrary,
follow a certain pattern. Specifically, we only considered the position from where each completed pass
was initiated. From the diversity of metrics quantifying the spatial randomness of a distribution of
discrete objects, we used the methodology proposed by Clark and Evans [28], since it combines the
concepts of clustering, randomness and regularity, all of them with a straightforward interpretation
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within the framework of a football match. Therefore, for a set of n points (passes) spatially distributed
over a two-dimensional space, we computed the distance ri,j between a point i and its nearest neighbor
j. Next, we obtained the mean nearest neighbor distance 〈r〉 = 1

n ∑n
i 6=j ri,j. Note that complete spatial

randomness of n points distributed over a surface S is described by a Poisson process (which, as we
will see, it is not the case for a football match), in which the probability density function for the nearest
neighbor distance, r, is p(r) = 2πδre(−πδr2), with δ = n/S being the point density. If we assume that
each point has the same probability of appearing at any position on the surface S, the expected average
distance between nearest neighbors is given by rran = 1

2

√
S/n [28].

Normalizing the reported mean nearest neighbor distance by the one expected in a random
distribution, we obtain the spatial entropy parameter Hs = 〈r〉

rran
, which measures how far the real

distribution of passes is from a completely random one. Interestingly, values of Hs far from one give
additional information. For example, Hs approaching zero reveals that the mean distance to the nearest
neighbors is very low, which is a consequence of the existence of clusters; i.e., small regions of the field
containing a high number of passes. On the contrary, values of Hs higher than the unity are related
with situations where the positions of the passes are more separated than in a random distribution.
For example, the largest value of Hs in a two-dimensional space occurs when points are placed in a
triangular lattice arrangement, leading to Hmax

s = 2.149. This way, the closer the value of Hs is to Hmax
s ,

the more regular the distribution of passes is.
Figure 1 shows four different examples of the spatial entropy parameter Hs in the context of

football passes. All plots of Figure 1 contain the same number of passes (n = 517). However, plots in
Figure 1a–c were artificially generated, while Figure 1d corresponds to a real case: passes made during
the match between Real Madrid and F.C. Barcelona during the season 2017/2018. In Figure 1a the
spatial entropy parameter is Hs = 0.14 and corresponds to the cases where passes are grouped in
clusters, leading to a low distance to nearest neighbors. Figure 1b shows the case where points are
randomly distributed, resulting in a value of Hs = 1.01. In Figure 1c, all passes are placed close to the
configuration where the distance to the nearest neighbors is maximum, leading to Hs = 1.73. Finally,
Figure 1d shows the actual locations of all passes made by Real Madrid during its match against F.C.
Barcelona, where Hs = 0.88. As we can see, the spatial entropy parameter has a value that is very close
to the random case.

To see how general the example shown in Figure 1d is, we computed the average spatial entropy
of each team, obtained for the matches played during the whole season. Figure 2 shows the Hs ranking
of all teams, which in all cases is slightly below one. These results indicate that the locations of the
passes made during a football match are highly random, no matter what team is playing (see in
Figure 2 how all values are close to one). Furthermore, the deviation of the average values of the
spatial entropy is not very high and all spatial entropies are contained within the interval (0.89,0.91).
Interestingly, the team that won the league that season, F.C. Barcelona, was in the fifth position of the
ranking, and furthermore, we did not report any correlation between the number of points at the end
of the season and the average spatial parameter.

The spatial entropy of a team is the result of a collective phenomenon based on the interaction
between players—in this case, exchanging the possession of the ball between them. Therefore, our next
step is having a look at a lower scale and investigating what the spatial entropy is corresponding to the
passes made by each player. In Figure 3a,b we plot the spatial entropy Hs(i) of player i, computed for
every match, together with the average position X(i) and Y(i) of all passes made by the player during
the match. Both X and Y are bounded between (0, 100). For the X coordinate, 0 corresponds to the
closest location to the player’s own goal and 100 to the rival goal. For the Y coordinate, 0 corresponds
to the left limit of the pitch and 100 to the right one. Note that we are using the average location of all
passes made by a player as a proxy to estimate his average position in the field.
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Figure 1. Spatial entropy parameter Hs. (a–c) Three examples of n = 517 artificially generated passes
for which the distances between locations where passes were made were increased. (a) Passes form
clusters, leading to a low spatial entropy parameter (Hs = 0.14). (b) The location of the passes is
randomly generated, resulting in a spacial entropy very close to one (Hs = 1.01). (c) The distance
between nearest neighbors is close to its optimal, leading to a regular spatial distribution of passes and
a spatial entropy (Hs = 1.73) close to the highest possible value in 2-dimensional distributions. Finally,
(d) the real location of all passes made by Real Madrid during its match against F.C. Barcelona (season
2017/2018). We obtained a value of (Hs = 0.88), revealing that the actual distribution of passes is close
to the random case.

Figure 2. Values of the spatial entropy parameter Hs for all Spanish teams during the season 2017/2018.
Error bars are the standard deviations of the means. Atlético de Madrid was the team with the highest
spatial entropy parameter (∼0.91), in contrast with Real Betis, which had the lowest one (∼0.89).
Note that all values are slightly lower than the unity, indicating a high randomness for the locations of
the passes.
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Figure 3. Spatial entropy Hs vs. the location of the players. (a) Each dot depicts the spatial entropy
for the average x-coordinate of the passes made by players during each match. (b) Here, the absolute
entropy is plotted as a function of the y-coordinate of players. (c) Average spatial entropy 〈Hs〉 in 20
subdivisions of the field (with a width of 5 field units) along the whole season. Errors bars are the
standard deviations of each subdivision. (d). Same as (c) but considering the Y axis.

This representation shows the interplay between the spatial entropy of the passes made by a
given player and his position in the field. Interestingly, Figure 3a shows two clear clusters of points.
The cluster on the bottom left corresponds to the spatial entropy of goalkeepers, who have a low spatial
entropy due to the fact that the locations of their passes are clustered close to the goal (i.e., goalkeepers
always try to avoid moving from their goals). The second cloud of points corresponds to the rest
of players, and their spatial entropy shows a slight tendency to increase as the player is close to an
opponent’s goal. Figure 3c shows the same information where the average of the spatial entropy every
5 field units 〈Hs〉 is calculated. We can observe how 〈Hs〉 increases with the position of the player until
X = 60; beyond this point, it seems to saturate, while at the same time, the error bars increase. Finally,
the entropy decreases for positions very close to the opponent’s goal, which seems to be a consequence
of the low number of passes within these regions.

Figure 3b,d show how the spatial entropy depends on the Y coordinate; i.e., the lateral position of
the player. We can also observe the cloud corresponding to the goalkeepers centered around Y = 50,
which corresponds to the lowest values of spatial entropy. Disregarding the goalkeepers, we can
observe a slight decrease of the spatial entropy as the players move to the sides of the field. This way,
players playing in the center of the pitch have higher spatial entropies. This fact is hidden in Figure 3d,
since the average entropy 〈Hs〉 around position Y = 50 is strongly reduced by the low values related
to goalkeepers.

Finally, Figure 4 shows a two-dimensional plot of both the average spatial entropy 〈Hs〉 (a) and
its corresponding standard deviation (b) calculated for all players during the whole season. On the
center-left, we can observe an island containing the values of the spatial entropy of goalkeepers and
how, for the rest of players, spatial entropy slightly increases while approaching the opponent’s goal.
In that regard, Figure 4b shows that the highest values of the standard deviation appear in the attacking
regions, which may be interpreted as a signature of the high variability that forward players have in
their playing patterns.
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Figure 4. Spatial entropy parameter 〈Hs〉 vs. location on the pitch. (a) Spatial entropy parameter 〈Hs〉
averaged over all players. (b) The corresponding standard deviations of the values shown in (a).

2.3. Temporal Entropy and Complexity of Football Passing Networks

Arriving at this point, we payed attention to the entropy related to the organizational properties of
teams and how the network of interactions between players evolved. Thus, we analyzed the structure
of the passing networks associated to each team and how their parameters fluctuated during a match.
As explained in the introduction, the nodes of the passing networks are the players of a team and links
(weighted and directed) arising from the number of passes made from one player to any other [17].
Note that, in this case, entropy should capture the temporal fluctuations of the network parameters.
We constructed the “50-pass networks” at every moment of the match, each of them containing the last
50 consecutive passes. This way, after the beginning of the match, we selected the first l = 50 passes
of a team to construct, for each team, the initial passing network G1→50. The nodes of this network
are the players and the links contain the directions of and the numbers of passes between pairs of
players, leading to a directed and weighted network. To ease the comparison between networks of
different teams, each titular player was assigned a node at the beginning of the match. If a player
was substituted, the new player occupied the node of the previous player. That way, we assured that
all networks had eleven players, focusing on the structure of the network as a whole instead of the
performance of isolated players. Next, each time a new pass was made, we disregarded the oldest
pass of the previous network and included the new one, assigning the time t of the last pass to the
new network. This kind of temporal network has two advantages: (i) it allows accounting for the
fluctuations of the network parameters along the match and (ii) it has exactly the same number of
nodes and links for any team, which detaches the influence of the absolute number of passes and
focuses only on the structural differences between networks. The number l of passes used to construct
the network could be modified to another value; however, it should be low enough to account for the
fluctuations occurring during the match (i.e., avoiding averages) and long enough to guarantee the
connectivity between all nodes of the network. In our case, we analyzed the effects of using different
number l of passes and chose l = 50 as a trade-off value.

For each temporal network of each team, we computed a group of spatial parameters; namely:
(i) the x-coordinate of the network centroid XCM, (ii) the y-coordinate of the network centroid YCM
and (iii) the spatial dispersion σCM of the players around the network centroid (in field units). Next,
we calculated a second group of parameters related, in this case, to the organization of the temporal
passing networks: (i) the weighted clustering coefficient C; (ii) the shortest path length sp; (iii) the
largest eigenvalue of the adjacency matrix λ1, which is an indicator of the network strength [29];
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(iv) the largest eigenvector centrality of a player ecmax (measuring the existence of a leading player);
and (v) the dispersion of the centrality of all players of the team σec. We also computed the average
time required by each team to construct 50-pass networks ∆t50. See Sections 4.1.1–4.1.5 of Methods for
a detailed description of each parameter and the way it was obtained.

Figure 5 shows an example of how network parameters fluctuate during a match. In our case, we
plotted the evolution of the x-coordinate of the 50-pass network centroid XCM of Real Madrid and F.C.
Barcelona during the match played at Camp Nou Stadium. In Figure 5a, we also schematically show the
network configuration of Real Madrid at three different moments of the match (t1 = 15:00, t2 = 38:00
and t3 = 60:00). In these plots, nodes represent the players that interacted in the corresponding
temporal networks. Their positions were obtained as the average coordinates from which their passes
were made. Concerning the width of a link, it is proportional to the number of passes made between
the two players the link connects. We can observe how the fluctuations of the value of XCM are related
not only to the players’ positions, but also to a reorganization of the passing network.

With the aim of understanding how the network parameters fluctuate, we computed the
permutation entropy (PE) [30] and the statistical complexity (SC) [31] of the time series corresponding
to each of the network parameters. Both variables (PE and SC) were measured by means of the
methodology proposed by Bandt and Pompe [30], which quantifies temporal aspects of time series
thanks to a translation to a set of symbols. This methodology has been proven to be fast, robust to noise
and effective for weak stationary processes [31–33], and has been applied in many different disciplines,
such as ecology, lasers, nonlinear dynamics, biomedicine, neuroscience and economics [26,33–37].
This method is also capable of capturing the entropy and complexity along several dimensions.
(See Section 4.2 of Methods for a detailed explanation about how PE and SC are calculated). Note that
in this section, entropy (and complexity) refer to temporal fluctuations and not to the spatial ones.
Therefore, we called the temporal entropy Ht(p) of a network parameter p to the PE of the time
series of that parameter p, while the temporal complexity SCt(p) was obtained by calculating the
corresponding SC.

Figure 5. Evolution of passing networks and their corresponding parameters. (a) The structure of Real
Madrid 50-pass network at three different moments of the match (t1= 15:00, t2= 38:00 and t3= 60:00).
(b) An example of how a network parameter fluctuates during the match. Specifically, we plotted the
XCM of Real Madrid (blue) and F.C. Barcelona (red), the latter playing at home.
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Figure 6 shows the 2-dimensional plot of the complexity vs. entropy of each network parameter,
which has been computed by averaging the values of Ht and SCt obtained for the 380 matches played
during the season. Note that for each match, we have two values (one for each team) for each parameter.
We can observe how the network parameters related to the coordinates of the network’s centroid (XCM
and YCM) are those parameters with the lowest entropy, and conversely, with the highest complexity.
This fact indicates that both XCM and YCM are the parameters that evolve less randomly, and therefore,
are good candidates for making predictions about the evolution of the network. On the other hand,
we can observe how the highest centrality of a player ecmax is the parameter with the highest entropy.
Note that the centrality dispersion σec also has a high entropy. Both facts indicate that the evolution of
the team centrality behaves rather randomly. Interestingly, the evolutions of two classical network
parameters, the average shortest path sp and the clustering coefficient C, are quite random, as indicated
by their high entropy and low complexity.

0.75 0.8 0.85 0.9 0.95
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Figure 6. Complexity-entropy diagram of all network parameters. Each point represents the average
value of the entropy H̄[p] and complexity S̄C[p] of each network parameter p for all the 20 teams of
“La Liga” during the season 2017/2018. Error bars are the standard deviation of the means. Specifically,
network parameters are: the x-coordinate of the network centroid XCM, the y-coordinate of the network
centroid YCM, the spatial dispersion σCM of players around the network centroid, the clustering
coefficient C, the average shortest path length sp, the largest eigenvalue of the adjacency matrix λ1,
the largest eigenvector centrality of a player ecmax and the dispersion of the centrality of all players of
the team σec.

Finally, we analyzed the entropy (and complexity) related to each team. Specifically, we were
concerned about the interplay between the average number of passes 〈n〉 made by a team and the
resulting entropy and complexity. Figure 7 shows those network parameters whose average entropy
〈Ht〉 vs. 〈n〉 had a correlation parameter fulfilling r2 > 0.6 (see the same results for the complexity
〈SCt〉 vs. 〈n〉 in Appendix A). Interestingly, only the x-coordinate of the network centroid XCM,
the clustering coefficient C, the highest centrality of a player ecmax and the centrality dispersion σec had
significant correlations with the average number of passes. This fact indicates that these parameters
are indeed influenced by the number of passes made by a team, suggesting the coaching staff of a team
should increase/decrease the number of passes as a way to modify the entropies of these parameters.
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Figure 7. Temporal entropy Ht vs. average number of 〈n〉. Only network parameters with a correlation
r2 > 0.6 are shown; namely, the x-coordinate of the network centroid XCM, the clustering coefficient C,
the largest eigenvector centrality of a player ecmax and the dispersion of the centrality of all players of
the team σec. (a) The average of XCM for each team along the whole season has a negative correlation
with the number of passes (R2 = 0.74). (b) The average clustering coefficient C has a positive correlation
with R2 = 0.79, as it is the case of ecmax (c) and σec (d).

3. Discussion

Summarizing, we have investigated the spatial and temporal entropies of football teams, focusing
on the locations of the passes made during a match and the evolution of the organization of each
corresponding passing network. The 380 matches of the Spanish national league (“La Liga”) played
during the 2017/2018 season were analyzed. First, we observed that the spatial entropy Hs obtained
from the passes’ positions of all teams was always close to the one, indicating a high randomness.
Atlético de Madrid and Valencia C.F. are the teams with the highest average spatial entropy (Hs = 0.910
and Hs = 0.907, respectively), while R.C.D. Espanyol and Real Betis are the ones with the lowest
entropy (Hs = 0.8914 and Hs = 0.8906, respectively). When the spatial entropy is analyzed at the
level of the individual player, we observed differences related to the average position in the field.
Goalkeepers are the players with the lowest spatial entropy, since they must remain close to their own
goal, reducing their area of influence. On the other hand, the entropy of the rest of players increases
as their position moves forward to the opponent’s goal. When the lateral distribution of entropy
was analyzed, we observed higher entropies in the middle of the field, which decrease as the lateral
boundaries are approached.

Next, we constructed the 50-pass networks of all teams and analyzed the fluctuations of their
main parameters during each match. In this case, we computed both the permutation entropy and
the statistical complexity, which account for temporal fluctuations of the time series of each network
parameter once they are translated into ordinal vectors [26,30]. The the x and y coordinates of the
center of mass of the network are the parameters with the lowest temporal entropies Ht and the
highest temporal complexities SCt, revealing that randomness is not their main guiding rule. On the
other hand, the highest eigenvector centrality of a player ecmax and the clustering coefficient C are
the network parameters with the highest entropy (Ht,ecmax = 0.938 and Ht,C = 0.929, respectively).
Note that network parameters with the highest entropy are the ones whose prediction will be more
complicated. Therefore, temporal entropy can be used to identify what parameters (those with the
lowest values) are worth paying attention to, and to explore whether it is possible to actively modify
them towards a given target.
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Finally, we investigated whether the number of passes made by a team was related to the
complexity/entropy of the network parameters. This is the case for the x-coordinate of the network
centroid XCM, the clustering coefficient C, the maximum centrality of a player ecmax and the centrality
dispersion σec, which have correlation coefficients with average numbers of passes 〈n〉 higher than 0.6.
Therefore, it is expected that increasing/decreasing the number of passes will result on a variation
of the entropy/complexity of each of these parameters. Interestingly, the two referent teams of the
Spanish league, Real Madrid and F.C. Barcelona have extreme positions in the (Ht, 〈n〉) plot of these
parameters (also in the (SCt, 〈n〉) ). For example, both teams are the ones with the highest numbers
of passes, and at the same time with the lowest entropy related to the x-coordinate of the network
centroid. Since we observed a negative correlation between both parameters, a team aiming to reduce
the entropy of its x-coordinate should try to increase its number of passes. The same reasoning, but in
the opposite direction, can be applied to the other three network metrics. In this case, both Real Madrid
and F.C. Barcelona are the teams with the highest entropy associated to C, ecmax and σec. Since the
correlations between these parameters and the number of passes are positive, increasing the number
of passes should lead to an increase of the entropy.

On the other hand, recent studies about networks-of-networks in other fields have shown that when
networks get connected, important properties of the ensembled systems are modified [38,39]. With this
regard, a multilayer description of a match, with two interacting networks composed of the internal
passes of each team, is still missing. We think this could be a fundamental approach to understanding
the evolution of entropy of the teams along the match, which cannot be interpreted without looking at
the response of the opponent. The fact that the two networks are competing for a common resource and
with an objective that directly implies interaction and competition with other networks, suggests new
points of view about how networks behave, and particularly, how they generate entropy. When two
teams (networks) are competing in the field, they need to develop strategies to create order/disorder,
challenging the concept of the “interface” or dynamic limit between the two teams. In that regard,
we should focus on how to create order and optimal organizational structures, but, at the same time,
create “disorder” with the aim of generating situations of superiority.

However, there are several crucial aspects that have not been addressed in the current paper, and
which certainly have a strong influence on the reported distributions of both the spatial and temporal
entropies. On the one hand, the particular tactical patterns of each football team may be responsible for
the reported entropies. Players are constrained to move or remain at certain areas of the pitch, and the
entropy related to their passes is consequently affected. In that sense, our results are just descriptive
and cannot give an explanation about the origins of the reported entropy. The interaction with the
opposing team is another factor that constrains the entropy of a team, since the position of passes is
not freely selected by players but is a consequence of the spatial distribution of partners and rivals.
The existence of a defensive and attacking phases adds further variables to the analysis, since some of
the passes can be considered defensive and others attacking, a dichotomy that has not been considered
in the current work.

We must also take into account that there are series of events that can also have crucial influences
on the entropy of a team and whose interplay should be analyzed in further studies. The score,
substitutions, the reorganization of the team based on a change of tactics and the fatigue of players are
few examples of different events whose impacts on the entropy of a team are still unknown. Finally,
with regard to the passing networks, several aspects can improve their construction and analysis. First,
it would be interesting to quantify the importance of passes and translate it into the weight assigned to
the links. Second, the construction of Markov matrices based on the structure of passing networks
may also be of interest in order to predict the movements of the ball and the amount of randomness in
its dynamics.

In view of all, we believe that our results, and further analysis applying concepts of nonlinear
dynamics and network science to football datasets, will result in a deeper understanding of the
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processes occurring in the pitch during a football match and will give coaches and technical staffs of
football teams additional (and complementary) information in order to take the best decisions.

4. Methods

4.1. Definition of Network Metrics

4.1.1. Centroid Coordinates and Dispersion

XCM and YCM correspond to the network centroid coordinates; i.e., the average position of all passes
of each temporal network. Specifically, we only consider the position from where passes are sent.
Values are given in field coordinates, which, in both axis, range from 0.00 to 100.00. In this way,
the center of the field corresponds to coordinates [50.00, 50.00] and the center of the opponent’s goal
is (100.00, 50.00) (0.00, 50.00) being the center of the team’s own goal). The centroid dispersion σCM
corresponds to the standard deviation of the average location of players (obtained from their passes)
with regard to the position of the network centroid.

4.1.2. Clustering Coefficient

The clustering coefficient of a node i is obtained as the percentage of the nodes directly connected
to it that, in turn, are connected between them. This measure can be averaged along the N nodes of
a network to obtain the average clustering coefficient. However, since passing networks are weighted,
we calculated the weighted clustering coefficient Cw(i) to measure the likelihood that neighbors of a
given player i will also be connected between them [40]:

Cw(i) =
∑j,k wijwjkwik

∑j,k wijwik
(1)

where j and k are any two players of the team and wij and wik is the number of passes between a
third player i and the both of them. Finally, the clustering coefficient of the whole network is obtained
by averaging Cw(i) over all players; i.e., C = 1

N ∑N
i=1 Cw(i). Note that, the weighted version of the

clustering coefficient measures the tendency of a team to form balanced triangles between players.

4.1.3. Shortest Path Length

In a passing network, the shortest path length (sp) [41] is the minimum number of players that
must be traversed by the ball to go from one player to any other of the team. Since passing networks
are weighted (i.e., the number of passes between players is different), we have to take into account the
different weights of the links, considering that the higher the weight between two players, the shorter
the topological distance between them. Here, the topological length dij of the link between two players
i and j is defined as the inverse of the link weight, dij = 1/wij. However, when computing sp for
weighted networks, the shortest path length between a pair of players may not be a direct link, since
there could exist a shorter path by combining two (or more) alternative links. Therefore, we computed
the minimal shortest path pij between all pairs of players using the Dijkstra’s algorithm [42]. Next,
we obtained the average shortest path sp of the whole team as:

sp =
1

N(N − 1) ∑
i,j i 6=j

pij (2)

where N = 11 is the total number of players of the team.
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4.1.4. Largest Eigenvalue of the Adjacency Matrix

The largest eigenvalue λ1 of the weighted adjacency matrix A of a network is a measure of the
network strength [29]. The weighted adjacency matrix A is a N × N matrix whose elements aij
contain the number of passes going from player i to player j. The largest eigenvalue of A is bounded
by the average number of passes between players 〈S〉, as λ1 ≥ 〈S〉, and also by smax ≥ λ1 ≥
max(〈S〉,√smax) [43], where smax is the maximum number of passes that a player has made to any
other player of his team. As a rule of thumb, networks with higher number of links (passes) will have
a higher λ1 and networks with the important nodes connected between them (known as assortative
networks) will also have higher λ1 than networks where the hubs (i.e., important players) are not
directly connected between them.

4.1.5. Eigenvector Centrality: Maximum Value and Dispersion

The eigenvector centrality ec(i) of a player i is a measure of node importance that is obtained by
calculating the eigenvector v1 associated to the largest eigenvalue λ1 of the weighted adjacency matrix
A. The eigenvector centrality is a measure of node importance that takes into account the number
of all directed connections a player (node) has. Furthermore, two factors contribute to increase the
eigenvector centrality of a given node: (i) a higher number of direct connections to other players (note
that connections are weighted) and (ii) being connected to other nodes that in turn, also have a high
centrality. In this way, important players are those that are strongly connected to other important
players of the team. Despite each player having a given eigenvector centrality, it is interesting to
compute the standard deviation σec and highest value ecmax, the former indicating whether all players
participate equally to the construction of the passing network and the latter showing whether there
exists a player accumulating a high importance in the team.

4.1.6. 50-Pass Network Time

The 50-pass network time ∆t is the time required to construct a 50-pass network. It is obtained
subtracting the time of the first pass of the network from the time of the last pass. Teams with shorter
∆t are those that generate more passes in less time. As explained in [13], the number of passes
considered to construct the network (n = 50) must be high enough to guarantee the construction of
a network between players and low enough to avoid the covering of very long periods. As in [13],
n = 50 is a trade-off value between both limits.

4.2. Temporal Entropy and Complexity

We used a temporal entropy metric that depends on the information content of a random variable
xt. Here, xt contains the evolution of a network parameter of one team sampled each 50 passes
(see Figure 5). We computed the evolution of nine network parameters and computed their temporal
entropy Ht and statistical complexity SCt. Given a finite collection of samples xt of length M, one can
define an embedding dimension D that implicitly defines both the length of the symbol vectors π of
a time series and the number of possible patterns as ||{π}|| = D!. Consecutive amplitudes of xt of
dimension D are mapped to a specific π-symbol that lies in an ordinal space of dimension D− 1 as
follows: the highest value of the D-vector of xt is given by the ordinal value of D− 1, while the point
of the series with lowest amplitude will be transformed into the lowest possible value 0. Intermediate
amplitudes are thus organized in the ordinal space between [0, D− 1]. For example, assuming D = 3,
let us suppose that we want to translate the initial D = 3 values {0.3, 0.01, 0.87} of the series into an
ordinal pattern. We would obtain an ordinal pattern π equal to (1, 0, 2). We use the condition M >> D!
to statistically guaranty the appearance of all available ordinal patterns in xt. Once the first ordinal
pattern at time t1 is obtained, we proceed with the remaining ordinal patterns by sequentially repeating
the previous process upon transforming the whole signal into a symbol sequence st containing M− D
ordinal patterns of length D = 3 (see Figure 8a).
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Figure 8. Obtaining ordinal patterns from time series. (a) An example of a set of ordinal patterns π of
D = 3. Some of them are repeated more frequently than others. (b) D! = 6 different ordinal patterns
can be possible for D = 3, leading to a probability distribution p(π) with 6 possible elements.

Next, we obtained the probability of appearance of each pattern p(π), which was built by taking
the normalized histogram of all available π’s on xt. The probability of finding a specific pattern π was
used to compute the temporal entropy Ht[p(π)]. Specifically, Ht was the permutation entropy [30]
that was taken as the ratio obtained from dividing the Shannon entropy of p(π) by the maximum
possible entropy: Ht[p] = −∑ pilog(pi)/Smax with Smax = S[pe] and pe = {1/D!} as a uniform
distribution. Note that in said way, the temporal entropy was normalized such that 0 ≤ Ht ≤ 1.
Ht quantified the levels of order (few patterns available in the signal) and disorder (all patterns are
equally available) of a signal. Finally, we computed the statistical complexity SC[p] by means of the
statistical disequilibrium Q[p]. Disequilibrium evaluates the existence of preferred patterns among
the accessible ones as Q[p] = Q0D[p, pe] with Q0 = −2{D!+1

D! log(D! + 1)− 2log(2D!) + log(D!)}−1

as a normalization constant and D[p, pe] as the Jensen-Shannon divergence between the information
content p(π) and the uniform distribution pe. Once the disequilibrium was obtained, the statistical
complexity was calculated as the product SCt[p] = Ht[p]Q[p]. High values of the statistical complexity
correspond to time series that have a diversity of patterns but, at the same time, they do not follow a
random distribution. In the paper, we decided to use D = 4 since the length M of the time series of
networks’ parameters allowed us to arrive to this dimension.
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Appendix A

Figure A1 complements Figure 7, showing those network parameters whose complexity had a
correlation with the average number of passes 〈n〉 fulfilling r2 > 0.6. Note that in all cases, complexity
behaves in the opposite way to the entropy.
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Figure A1. Temporal Complexity SCt vs. average number of 〈n〉. Only network parameters with
a correlation r2 > 0.6 are shown; namely, the x-coordinate of the network centroid XCM (a), the
clustering coefficient C (b), the largest eigenvector centrality of a player ecmax (c) and the dispersion of
the centrality of all players of the team σec (d).
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