
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19735  | https://doi.org/10.1038/s41598-020-76835-3

www.nature.com/scientificreports

Consistency and identifiability 
of football teams: a network 
science perspective
D. Garrido1,2, D. R. Antequera1,2, J. Busquets3, R. López del Campo4, R. Resta Serra4, 
S. Jos Vielcazat4 & J. M. Buldú1,2,5*

We investigated the ability of football teams to develop a particular playing style by looking at 
their passing patterns. Using the information contained in the pass sequences during matches, we 
constructed the pitch passing networks of teams, whose nodes are the divisions of the pitch for a given 
spatial scale and links account for the number of passes from region to region. We translated football 
passings networks into their corresponding adjacency matrices. We calculated the correlations 
between matrices of the same team to quantify how consistent the passing patterns of a given team 
are. Next, we quantified the differences with other teams’ matrices and obtained an identifiability 
parameter that indicates how unique are the passing patterns of a given team. Consistency and 
identifiability rankings were calculated during a whole season, allowing to detect those teams of 
a league whose passing patterns are different from the rest. Furthermore, we found differences 
between teams playing at home or away. Finally, we used the identifiability parameter to investigate 
what teams imposed their passing patterns over the rivals during a given match.

Is it possible to quantify to what extent a team has a defined playing style? During the last years, this question 
has captured the attention of many scientists working on sports  sciences1–4. Year after year new technologies are 
incorporated to obtain more information about any action carried out by players on the pitch. Consequently, 
the acquisition of event and tracking data has boosted in-depth analysis of football, leading to the definition 
of new metrics to characterize the player and team  performance5. Understanding the team’s organization and, 
particularly, the identification of playing styles has benefited from these new  methodologies6. For example, 
departing from the position of all players of a given team during a match, Moura et al.7 calculated the convex 
hull, i.e., the area covered by the contour of the player’s position. Next, they analyzed the convex hull′s fluctua-
tions, quantifying players’ ability to spread and compact depending on the phases of the game, which was linked 
to a team’s playing style.

Performance indicators have also been successfully used as a proxy to determine playing styles in football. 
 In8, several passing parameters (e.g., passes per action, passing directions, and target players) and rates of passing 
success were combined to define an Index of Game Control (IGC). An Index of Offensive Behaviour (IOB) was 
also introduced by combining parameters of ball possession, gain of possession and quality of possession. IOB 
allowed to distinguish between two playing styles, namely, possession play and direct play. Interestingly, IOB 
revealed that most successful teams preferred possession play. More recently, Fernandez-Navarro et al.9 collected 
19 team performance indicators (14 during the attacking phase and 5 for the defending one) and automatically 
classified the playing styles of LaLiga and Premier League teams. Six different factors (e.g., direct/possession 
play, pressure area, possession width, etc..) were used to define the different playing styles, and the results of the 
analysis identified 12 different styles according to the score obtained at each factor.

However, despite the advances for an “algorithmic recognition” of the playing style, a fundamental obstacle 
remains: The team’s playing style is a subjective concept that relates to the team’s overall use of the different 
playing methods. The team formation, consisting on how players of a team are distributed on the field, has been 
traditionally used as a proxy to identify the way a team plays. With this regard, the starting line-ups given by 
the coaching teams to the media at the beginning of a football match are used to describe how players will be 
organized at the pitch. Classical team formations, such as 4-4-2 or 4-3-3, are then suggested by experienced 
journalists to be expected during the match. Team formation indicates the position of all players, except for the 
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goalkeeper, towards the opponent’s goal in a qualitative way. For example, the 4-4-2 formation is characterized 
by 4 defenders (two center-backs in the middle, two full-backs on the left and right sides), 4 midfielders (two 
central midfielders, two wingers on the left and right sides) and 2 strikers. Teams (and coaches) are supposed to 
be identified with one (or two) specific team formation, being one of the leading indicators of a team’s playing 
style. However, nothing is simple in football. As explained by Wu et al.3 the formation of players evolves during 
the match, which recommends the use of tracking algorithms that continuously evaluate the team formation 
during the different phases of the game.

In this paper, we propose an alternative way of analyzing the playing styles of football teams. Our main aim 
is to determine whether specific teams maintain their playing style along a season and, more importantly, if it is 
possible to distinguish the particular organization of a given team from the rest. We focused on questions such as 
what teams adapt to others and what teams remain loyal to their styles? Or, can we quantify what team imposed 
its style over its opponents during a given match? To answer these questions, we propose a new methodology to 
analyze the passing patterns of a given team and evaluate whether they are maintained along a season. Using event 
data supplied by  Mediacoach10, we constructed the passing networks associated with each team and analyzed 
their structures using different methodological tools coming from Network  Science11.

The application of Network Science to a diversity of fields, from epidemics to social networks or brain dynam-
ics, has demonstrated the utility of this new branch of science in analyzing complex problems from new perspec-
tives. In recent years, different research papers have proposed the adaptation of a diversity of network metrics to 
 football12–14, showing the possibility of evaluating the performance of players and  teams15–17. The fundamental 
difference between Network Science and classical analysis about team organization and performance is that the 
attention is not paid to the individual components (i.e., players) but, on the contrary, considering the system as 
a whole. Following this approach, we used the event datasets to construct the multi-scale pitch passing networks 
of football teams. Specifically, we divided the pitch into m regions and constructed the pitch-passing networks, 
whose nodes are the m divisions of the pitch and the links between nodes account for the number of passes from 
one region to any other during a match (see Fig. 1A, for an example). Pitch passing networks have been used 

Figure 1.  Pitch passing networks. In (A), an example of the pitch passing network of Real Madrid during its 
match against Getafe (season 2018/2019). The pitch is divided into a p× q grid, leading to m = p× q nodes. In 
this particular example, p = q = 5 and m = 25 . The width of each link is proportional to the number of passes 
aij from node (region) i to node j. In (B), we plot the corresponding weighted adjacency matrix A of the pitch 
passing network plot in plot (A). The element A{i, j} contains the number of passes from node i to node j. Note 
that line k of the matrix contains all outgoing passes from node k. On the other hand, column k accounts for 
the passes entering region k. The diagonal elements contain the number of passes starting and finishing inside 
each of the k nodes. In (C–E), pitch passing networks of Real Madrid during a match against F.C. Barcelona at 
different scales. Note that, despite passes are the same, the fact that the pitch is divided into areas of different 
sizes results on different pitch passing networks.



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19735  | https://doi.org/10.1038/s41598-020-76835-3

www.nature.com/scientificreports/

to quantify team  performance16 and analyze differences in the playing patterns of football  teams18. In our case, 
we tracked the evolution of the pitch-passing networks of Spanish football teams playing at the first division of 
LaLiga during the season 2018/2019. We defined a consistency parameter of each team, which measures how 
similar the organization of pitch passing networks is during the season. Next, we analyzed how different pitch 
passing networks are from the rest of the teams, and we defined a new parameter called the team identifiability. 
We borrowed this idea from neuroscience, where identifiability consists of the ability to identify the functional 
brain networks of one individual from a group of functional networks of different  people19,20. We propose to use 
the identifiability parameter to determine what teams have particular passing patterns and what teams change 
their passing distribution according to their rivals. Finally, we showed that the identifiability parameter could 
quantify to what extent a team imposed their passing patterns over the other in a given match.

Methods
Datasets. Datasets were acquired through  Mediacoach10, whose event provider is  StatsPerform21. From all 
events recorded during a match, we focused in all passes made during each match of the 2018/2019 season of the 
first division of the Spanish national league “LaLiga”. Twenty teams played the competition (see Table 1 for the 
final ranking). For each of the 380 matches played during the season, we considered the number of successful 
passes of each team. The information about the passes contained, for a pass i: (1) the precise moment t(i) when 
the pass was made, (2) the x and y coordinates of the position from where the pass was sent [x1(i),y1(i)] and (3) 
the position where the pass was received [x2(i),y2(i)] . Importantly, the x and y coordinates were given in “field 
units”, ranging, in both axes, from 0 to 100 (in all fields). The information about the home and away teams of 
each match was also used in the analysis.

Multi‑scale pitch passing networks. Pitch passing networks describe how the ball flows through the 
field during the possession of a given team using specific partitions of the  pitch18. The construction of this kind 
of networks requires several steps, beginning with the division of the pitch into m = p× q areas, each one corre-
sponding to a node of the passing network, as shown in Fig. 1A. In this particular example, the field was divided 
into 5× 5 rectangular areas (i.e., m = 25 areas or nodes). Next, we considered all completed passes made by a 
given team during a match. The links connecting the nodes of the network represented the number of passes 
made from each region (i.e., node) to any other. In Fig. 1A arrows are the representation of those links, whose 
width is proportional to the number of passes between nodes. In turn, we can see in Fig. 1A that some areas 
have loops, which correspond to passes that start and finish inside the same area. On the other hand, nodes’ 
sizes are proportional to their importance, which are obtained through the eigenvector centrality, a measure to 
quantify the relevance of a node inside a  network22. The adjacency matrix A is the mathematical abstraction of 
the pitch passing network, whose elements ai,j account for the number of passes starting in area i and finishing 
in area j. The ai,i elements of the diagonal are the number of passes that do not cross the boundaries of the region 
i. Importantly, the adjacency matrix A has crucial information about each area of the pitch. As we can see in the 

Table 1.  Teams and ranking at the end of the season 2018/2019 of LaLiga Santander. Ranking, points, number 
of scored goals and conceded goals.

Ranking (2018/2019) Team Points Scored goals Conceded goals

1 F.C. Barcelona 87 90 36

2 Atlético de Madrid 76 55 29

3 Real Madrid 68 63 46

4 Valencia 61 51 35

5 Getafe 59 48 35

6 Sevilla 59 62 47

7 R.C.D. Espanyol 53 48 50

8 Ath. Bilbao 53 41 45

9 Real Sociedad 50 45 46

10 Real Betis 50 44 52

11 Alavés 50 39 50

12 Eibar 47 46 50

13 Leganés 45 37 43

14 Villarreal 44 49 52

15 Levante 44 59 66

16 Valladolid 41 32 51

17 Celta de Vigo 41 53 62

18 Girona 37 37 53

19 S.D. Huesca 33 43 65

20 Rayo Vallecano 32 41 70
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example of Fig. 1B, the i-row of the matrix contains the number of out-going passes of area i, while the i-column 
has the number of the incoming passes.

It is worth noting that the number of nodes and, in turn, the structure of the pitch passing networks crucially 
depends on the number of divisions of the field. In Fig. 1C–E we plot the pitch network of the same team, for the 
same match, at three different partitions: 3× 3 (C), 5× 5 (D) and 10× 10 (E). Increasing the number of divisions 
results in an increase of nodes, while the number of passes remains the same. Therefore, the average weight of 
the links decreases as it does the link density. Indeed, some nodes could get disconnected from the rest when 
the pitch division leads to a high number of nodes, as shown in the case of Fig. 1E (see the disconnected area at 
the bottom left). However, we should not consider this fact as a drawback. On the contrary, it means that each 
scale leads to different networks and, consequently, different information, suggesting a multi-scale analysis of 
pitch passing networks.

Calculating consistency and identifiability. The next step was to evaluate if teams’ pitch networks 
maintain their organization along a season and if networks of certain teams have unique properties not shared 
with other teams. With this aim, we first analyzed the pitch networks of each team for each match of the sea-
son. Specifically, for a given team and given match we obtained the p× q pitch networks with 1 ≤ p ≤ 20 and 
2 ≤ q ≤ 20 , leading to passing networks from m = 2 nodes to m = 400 nodes. In this way, each pitch network 
corresponds to a different spatial scale; the higher the number of nodes, the smaller the area associated with 
them, and the higher the spatial resolution. Next, we computed, for each scale, the correlation between all the 
adjacency matrices of each team. Given a specific scale m, the correlation between two matrices A(m) and B(m) 
is obtained as:

This way, we call “scale-consistency” C(m) to the average correlation between matrices of the same team at each 
scale, where m is the number of divisions of the pitch. Finally, the team “average consistency” |C| is computed 
as the average of the scale-consistency, |C| = �C(m)� . Figure 2 shows a qualitative description of the process 
undergone. The bottom left plot shows an example of the consistency C(m) of a team at different scales. We can 
observe how C(m) decreases as the number of nodes increases. The reason is that a low number of nodes leads 
to small networks with a low number of links (with a high weight), and, as a consequence, there is less diversity 
in the possible network structures. We can also observe that there are different combinations of the pitch divi-
sion leading to the same number of nodes, e.g., we can have m = 20 with p = 4 and q = 5 or, conversely, with 
p = 5 and q = 4.

We can also quantify how different pitch-passing networks of a team are compared with other teams’ net-
works. With this aim, we first obtained the scale-consistency C(m) of a given team following the process explained 
above. Next, we calculated the correlation R(m) of all passing networks of a team (at all scales) with the rest 
of the league’s teams. This can be done by considering matrices A(m) of Eq. (1) belonging to a given team and 
matrices B(m) corresponding to the rest of the teams. We called this parameter the “rival correlation” R(m), 
where m indicated the number of partitions (nodes) of the scale at which the correlation is calculated. Finally, 
we define the “scale-identifiability” I(m) of a team as the team’s scale-consistency C(m) minus the rival correla-
tion R(m), i.e. I(m) = C(m)− R(m) . Finally, we can calculate the team average identifiability |I| as the mean 
value of the scale-identifiability, |I| = �

∑

I(m)� . Note the implications of the identifiability parameter |I|: Teams 
with a high value are those whose pitch passing networks are consistent, i.e., have a similar organization for all 
matches but, at the same time, are different from the rest of the teams. Again, Fig. 2 shows an example of the 
scale-identifiability (bottom-right plot) of a team. In this case, the function shows a maximum for a particular 
scale, which corresponds to a number of nodes around m = 50 . This fact reveals that pitch partitions around 
this scale better capture the characteristic features of this particular team’s passing networks.

Results
First, we computed the scale-consistency C(m) and the average consistency |C| of the 20 teams of LaLiga 
2018/2019 season. Figure 3A,B shows, respectively, the scale-consistency of the teams that ranked first, F.C. 
Barcelona (FCB), and last, Rayo Vallecano (RV), at the end of the season. In both cases, we obtained a monotoni-
cally decaying function indicating that the higher number of divisions of the pitch, the lower the consistency of 
both teams. The same pattern is also reported for all teams of the competition (see Supplementary Information). 
However, scale-consistency has differences between teams, as we can observe in Fig. 3C, where we plot the dif-
ference between the scale-consistencies of both teams CFCB(m)− CRV (m) . As we can see, scale-consistency is 
higher at F.C. Barcelona, no matter what the number of divisions of the pitch is and, furthermore, the difference 
is maximum around m ∼ 50 , revealing that there is a particular scale where F.C. Barcelona was much more 
consistent than Rayo Vallecano.

Figure 3D shows the average consistency of all teams for matches played at home (x-axis) and away (y-axis). 
First, we restricted the calculation of the scale-consistency C(m) to matches played just at home or just away, 
leading to C(m)home and C(m)away , respectively. Next, we obtained |C|home and |C|away by averaging both scale-
consistencies. The red solid line of Fig. 3D corresponds to |C|home = |C|away and it is plot to help the reader 
detecting whether a team has more consistency playing at home (points below the line) or away (points above 
the line). We can observe how all teams but one (Rayo Vallecano) have higher average consistencies when playing 
at home, since they are placed below the line |C|home = |C|away . Thus, the increase in consistency could be one 

(1)
C(m) =

∑

i

∑

j(A(m)i,j − Ā(m))(B(m)i,j − B̄(m))
√

(

∑

i

∑

j(A(m)i,j − Ā(m))2
)(

∑

i

∑

j(B(m)i,j − B̄(m))2
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more of the benefits of being the home team. Interestingly, Real Madrid and F.C. Barcelona are the teams with 
the highest average consistency both at home and away. These two teams achieved the third and first positions, 
respectively, and the highest values of consistency indicate that they are the teams whose passing networks have 
a more regular structure. Using the k-means  algorithm23 we categorized teams into three groups, which are 
indicated by the shadowed regions in Fig. 3D. The three detected clusters correspond to high (1), intermediate 
(2), and low consistency (3). Real Madrid and F.C. Barcelona belong to cluster 1, the one corresponding to the 
highest consistency. Seven teams, including Athlético de Madrid (second at the end of the season), belong to 
cluster 2. Finally, eleven teams are assigned to the cluster with the lowest consistency (3). Interestingly, the three 
teams relegated to the second division (Girona, Huesca, and Rayo Vallecano) belong to this cluster.

Second, we calculated the identifiability of all teams as explained in the “Methods” section. Figure 4A,B show 
the scale-identifiability I(m) of, again, F.C. Barcelona and Rayo Vallecano (see Supplementary Information for 
the rest of the teams). In this case, we observe a different scaling behavior when the two teams are compared. 
F.C. Barcelona reaches high values of identifiability (as we will see, it is the team with the highest average 
identifiability), particularly around a pitch partition with m ∼ 50 nodes. Therefore, it is at this scale where F.C. 
Barcelona passing networks are more distinguishable from the rest of the teams. Concerning Rayo Vallecano, 
its identifiability rapidly decays to zero, indicating that the organization of its passing networks does not have 
remarkable differences with the rest of the teams. Concerning the differences between playing at home or away, 
we observe similarities and differences from the patterns reported for the average consistency (see Fig. 4C). As 
in the previous case, the k-means the algorithm detects F.C. Barcelona and Real Madrid to be in the cluster of 
teams with the highest identifiability. However, while Real Madrid was the team with the highest consistency, the 
team with the highest identifiability is F.C. Barcelona. The second cluster, the one with moderate identifiability, 
contains only three teams: Atlético de Madrid, Real Sociedad, and Eibar. Finally, the third cluster includes the 
rest of the teams. The solid line in Fig. 4C corresponds to |I|home = |I|away , and we can observe how there are 
teams at both sides of the line, a fact not reported when carrying a similar analysis about the team’s consistency. 
Therefore, there is no evidence that playing at home increases the team’s identifiability. However, the two teams 
with the highest identifiability have better values when playing at home.

Figure 2.  Qualitative description of how the consistency and identifiability of football teams are calculated. 
First, we obtained the multi-scale pitch passing networks of all matches and teams. Second, the adjacency 
matrix (see Fig. 1B) of each match and pitch partition is calculated. Third, we calculate the cross-correlation of 
all matrices for all scales. Each scale corresponds to a different number of nodes m. The scale-consistency C(m) 
(bottom left) is obtained when only the same team’s adjacency matrices are considered. Finally, we calculate the 
scale-identifiability I(m) (bottom right) subtracting the correlation with other teams from the scale-consistency 
C(m). The procedure is repeated for partitions of the pitch of different sizes, leading to a value of C(m) and I(m) 
that depends on the number of nodes m.
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Finally, Fig. 4D shows the relation between consistency and identifiability. We plot the average consistency 
|C| of each team vs. its average identifiability |I| and calculate the linear regression between both variables. The 
high value of the correlation coefficient ( r = 0.956 ) confirms that teams with a high consistency also have high 
identifiability, despite some teams deviate from the general trend. This is the case, for example, of Getafe (ranked 
#5 ), which has much higher identifiability than the one expected by its consistency.

Identifiability has practical implications that may be used by coaching teams to prepare and analyze matches. 
For example, we can calculate our next rival’s identifiability, check if it is higher or lower when playing at home 
or away, and prepare the match accordingly. An opposing team with high identifiability is prone to impose its 
passing pattern, while a team with low identifiability will probably adapt to the opponent. Besides, we can obtain 
a value of the identifiability of two teams for a particular match. For example, suppose F.C. Barcelona and Rayo 
Vallecano have played between them. We can obtain the multi-scale passing networks of both teams for this 
specific match. Next, we can compute how similar are the networks of this match to the rest of the matches played 
by each team and obtain the match-identifiability parameter of both teams, IFCBmatch and IRVmatch , respectively. Finally, 
we can calculate the difference between the match-identifiability of both teams and obtain Idiff = IFCBmatch − IRVmatch . 
Note that Idiff  indicates which of the two teams played more similarly to its style (maintaining its passing pat-
terns) in that match. We computed Idiff  for all matches of the season and summarized the results in Fig. 5. Rows 
contain home teams, while columns correspond to away teams. Teams have been ordered, from top to bottom, 
according to the final ranking at the end of the season, to show the connection between identifiability and the 
performance of a team. Matches where the home teams imposed their passing patterns (i.e., home teams had 
higher identifiability) are plot in yellow, while bluish cells correspond to away teams imposing their passing 
patterns. In this way, we can observe how yellowish cells are mainly placed above the diagonal of the matrix, 
indicating that when two teams played, the one ranked in a higher position had a higher probability of impos-
ing its playing style. If we pay attention to particular teams, we can observe that F.C. Barcelona was the team 
that won the “identifiability contest” in more matches, both at home and away, just followed by Real Madrid. 
However, it is worth mentioning that Idiff  is not always an indicator of the result of a match since there are some 

Figure 3.  Scale-consistency C(m) of a football team, where m is the number of divisions of the pitch. Plots 
(A) and (B) show the consistency of F.C. Barcelona and Rayo Vallecano, the first and the last teams of the 
ranking at the end of the season, respectively. In both plots, the horizontal axis corresponds to the number of 
nodes m (areas of the pitch) at which the consistency is calculated. As we can observe, consistency decreases 
as the number of nodes increases. In plot (C), we plot the difference between the consistency of F.C. Barcelona 
and Rayo Vallecano as a function of the number of nodes. Differences maximize around m ∼ 50 . In (D), we 
compared the average consistency when playing at home |C|home or away |C|away . The blue shadowed areas 
represent the three clusters detected by the k-means algorithm. Teams are numbered according to their ranking 
at the end of the season.
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matches where the team that lost the match had higher identifiability. In other words, playing your way does not 
guarantee the victory. With this regard, we analyzed the results of a match according to the match-identifiability 
Idiff  and we obtained that, for the season 2018/2019, the team with highest Idiff  won in the 44% of the matches, 
while the three points went to the team with the lowest Idiff  in the 27% of the cases.

Discussion
We have introduced a new methodology to quantify the consistency and identifiability of football teams. Our 
approach focuses on the organization of pitch passing networks, whose nodes are different areas of the pitch con-
nected through the completed passes between any two regions. Pitch passing networks contain information about 
how teams move the ball along the match and what are the most connected areas of the pitch. Furthermore, they 
contain spatial information that is lost when the nodes of the passing networks are the players  themselves14,18. 
It is worth mentioning that there is no unique pitch passing network for a given match, but a “family” of them. 
The reason is that the pitch can be divided into partitions of different sizes, leading to different pitch passing 
networks, with a different number of nodes and, consequently, with a different structure. Within this framework, 
we defined the team’s consistency as the ability to maintain the structure of pitch passing networks from match 
to match. Consistency was quantified by, first, obtaining the adjacency matrices associated with pitch passing 
networks of a given team and, second, calculating the cross-correlation of these matrices. We repeated this 
process with partitions of the pitch of different sizes, from m = 4 areas to m = 400 . In this way, we obtained the 
scale-consistency C(m) of football teams, indicating how similar pitch passing networks are at different scales. 
The team consistency |C| obtained as the average of the scale-consistency allows to rank teams according to this 
parameter and, furthermore, to distinguish between the behavior of the team in matches played at home or away. 
The analysis of Spanish football teams paying at LaLiga during season 2018/2019 revealed that Real Madrid and 
F.C. Barcelona were the most consistent teams, while Alavés and Getafe were the most inconsistent. It is worth 

Figure 4.  Identifiability of LaLiga teams. In (A) and (B), we plot the scale-identifiability I(m) of F.C. Barcelona 
(A) and Rayo Vallecano (B), the first and last teams of the ranking, respectively. In (C), we plot the average 
home identifiability |I|home vs. the away identifiability |I|away . The solid line corresponds to |C|home = |C|away , 
indicating the frontier between having higher identifiability at home (below the line) or away (above the line). 
The shadowed areas correspond to a cluster classification given by the k-means algorithm. In (D), we plot the 
average consistency |C| vs. the average identifiability |I| of each team. In this case, the solid line is the linear 
regression, which has a correlation coefficient of r = 0.956 . Team numbers are the ranking at the end of the 
season (see Fig. 3 or Table 1 for the teams’ names).
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mentioning that consistency (or identifiability) is not a proxy of team’s performance, but a quantifier of how a 
team maintains a particular passing pattern. Therefore, the value reported for each team requires a particular 
interpretation. On that sense, Getafe is a team with a playing style characterized by an intense pressure at higher 
positions of the field, adapting to the specific formation of their rivals and, as a consequence, having a low con-
sistency (and identifiability). However, Getafe qualified fifth at the end of the season, a commendable position 
according to its budget. Concerning the location of the match, all teams played more consistently at home than 
away, except Rayo Vallecano, the team that finished the championship at the last position. These results indicate 
that home teams are prone to maintain a playing pattern compared to away teams.

Beyond consistency, we investigated how the organization of pitch passing networks was related to each 
particular team. Our main aim was not to categorize playing styles but to quantify how different are the passing 
patterns of a given team from the rest of its rivals. With this target, we computed the identifiability of football 
teams by, first, quantifying their consistency and, second, subtracting the similarity with the pitch passing net-
works of the rest of the teams. Teams with high identifiability fulfill two requirements: (1) they have consistent 
passing networks during the season and (2) their passing networks are different from the rest of the teams. 
Again F.C. Barcelona and Real Madrid were the two teams with the highest identifiability. However, the Catalan 
team led the identifiability ranking, instead of Real Madrid, which had the highest consistency. Furthermore, 
we found that specific teams had an optimal partition of the pitch (around m ∼ 50 nodes) at which the team’s 
identifiability was higher. This optimal scale was reported at the identifiability of F.C. Barcelona, Real Madrid, 
Atlético de Madrid and Real Betis, all of them having high values of the identifiability parameter. The fact that 
an optimal scale exists has significant consequences on the definition of pith networks: Divisions of the pitch 
leading to a too high or too low number of nodes may lose information about the passing patterns. Interestingly, 
we did not find a standard behavior when comparing the identifiabilities of home/away teams, i.e., some teams 
are more identifiable at home but others away. The comparison between consistency and identifiability showed 
a positive correlation, despite some teams, such as Getafe, deviated from the general trend. The interpretation 
of such deviations should be carried out by football professionals/experts with knowledge about each team’s 
specificities and the circumstances surrounding their performance (e.g., a change of the coaching team or player 
injuries). Finally, we showed how it is possible to obtain an identifiability value of a team for each match, which 
can be used to assess which team imposed its passing pattern during the game. This information could also help 
to prepare the next match according to the particular identifiability of the rival. The match-by-match analysis 
showed that F.C. Barcelona was the team imposing their passing patterns more frequently both at home and 
away, followed by Real Madrid. However, having higher identifiability than the rival at a given match was not 
necessarily an indicator of a victory. Although teams placed at a more top position of the ranking generally had 

Figure 5.  Match-identifiability for the season 2018/2019 of LaLiga. Teams are ordered according to their 
ranking at the end of the season. Rows correspond to home teams, while columns are the away teams. Each cell 
contains the final score of the match.
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higher match identifiability than their rivals, we observed some matches where the final score did not correlate 
with this difference.

It is worth also mentioning the limitations of our methodology. On the one hand, we only used the informa-
tion contained in the passes made by a team. This fact unavoidably limits the detection of the particular signature 
of teams, since there are a diversity of other actions contributing to a team’s playing style. Indeed, there is space 
for improving the identification of playing styles once the analysis goes beyond the limitations of classical team 
formations, such as 4-4-2 or 4-3-3. Therefore, further improvements in our methodology should consider includ-
ing information about other actions such as shots, tackles, or dribbles. Another shortcoming of the consistency 
and identifiability parameters is that we need a certain number of matches to quantify them. Therefore, although 
we could obtain both parameters before the end of the season, they can not be calculated at the beginning of 
the championship since we would not have enough matches to define each team’s average consistency and iden-
tifiability. Furthermore, there are unavoidable changes in the team structure that may affect the team’s passing 
pattern. For example, a given team may change its coach in the middle of the season and have low identifiability 
values due to a change in its playing style. With this regard, it is always necessary to know each team’s context to 
interpret team consistency or identifiability adequately.

Finally, we believe that further studies could develop in more detail the information contained in both the 
identifiability and consistency parameters. For example, it would be possible to evaluate what regions of the pitch 
are contributing the most to these parameters. In this way, coaching teams could benefit from the detection of 
the areas of the pitch where our team (or the rival) is playing as expected and others, where the behavior devi-
ates from the plan. On the other hand, it would be possible to obtain a real-time estimation of the identifiability 
parameter during a match and analyze at what moments a team (or its opponent) is playing as expected, being 
a valuable information for making decisions and/or find explanations in the subsequent analysis. Hopefully, in 
the years to come, we will see more sophisticated definitions of playing styles, not only in football but in other 
team sports where the way players interact crucially influences team performance.
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